↳ ITRS
↳ ITRStoIDPProof
z
f(TRUE, x, y, z) → f(&&(>@z(x, y), >@z(x, z)), x, y, +@z(z, 1@z))
f(TRUE, x, y, z) → f(&&(>@z(x, y), >@z(x, z)), x, +@z(y, 1@z), z)
f(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
f(TRUE, x, y, z) → f(&&(>@z(x, y), >@z(x, z)), x, y, +@z(z, 1@z))
f(TRUE, x, y, z) → f(&&(>@z(x, y), >@z(x, z)), x, +@z(y, 1@z), z)
(0) -> (0), if ((z[0] →* z[0]a)∧(x[0] →* x[0]a)∧(+@z(y[0], 1@z) →* y[0]a)∧(&&(>@z(x[0], y[0]), >@z(x[0], z[0])) →* TRUE))
(0) -> (1), if ((z[0] →* z[1])∧(x[0] →* x[1])∧(+@z(y[0], 1@z) →* y[1])∧(&&(>@z(x[0], y[0]), >@z(x[0], z[0])) →* TRUE))
(1) -> (0), if ((+@z(z[1], 1@z) →* z[0])∧(x[1] →* x[0])∧(y[1] →* y[0])∧(&&(>@z(x[1], y[1]), >@z(x[1], z[1])) →* TRUE))
(1) -> (1), if ((+@z(z[1], 1@z) →* z[1]a)∧(x[1] →* x[1]a)∧(y[1] →* y[1]a)∧(&&(>@z(x[1], y[1]), >@z(x[1], z[1])) →* TRUE))
f(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (0), if ((z[0] →* z[0]a)∧(x[0] →* x[0]a)∧(+@z(y[0], 1@z) →* y[0]a)∧(&&(>@z(x[0], y[0]), >@z(x[0], z[0])) →* TRUE))
(0) -> (1), if ((z[0] →* z[1])∧(x[0] →* x[1])∧(+@z(y[0], 1@z) →* y[1])∧(&&(>@z(x[0], y[0]), >@z(x[0], z[0])) →* TRUE))
(1) -> (0), if ((+@z(z[1], 1@z) →* z[0])∧(x[1] →* x[0])∧(y[1] →* y[0])∧(&&(>@z(x[1], y[1]), >@z(x[1], z[1])) →* TRUE))
(1) -> (1), if ((+@z(z[1], 1@z) →* z[1]a)∧(x[1] →* x[1]a)∧(y[1] →* y[1]a)∧(&&(>@z(x[1], y[1]), >@z(x[1], z[1])) →* TRUE))
f(TRUE, x0, x1, x2)
(1) (z[0]=z[0]1∧x[0]=x[0]1∧+@z(y[0]1, 1@z)=y[0]2∧x[0]1=x[0]2∧&&(>@z(x[0], y[0]), >@z(x[0], z[0]))=TRUE∧z[0]1=z[0]2∧+@z(y[0], 1@z)=y[0]1∧&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1))=TRUE ⇒ F(TRUE, x[0]1, y[0]1, z[0]1)≥NonInfC∧F(TRUE, x[0]1, y[0]1, z[0]1)≥F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(2) (>@z(x[0], y[0])=TRUE∧>@z(x[0], z[0])=TRUE∧>@z(x[0], +@z(y[0], 1@z))=TRUE ⇒ F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥NonInfC∧F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥F(&&(>@z(x[0], +@z(y[0], 1@z)), >@z(x[0], z[0])), x[0], +@z(+@z(y[0], 1@z), 1@z), z[0])∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(3) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0)
(6) (y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧-1 + y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0)
(7) (1 + y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0)
(8) (1 + y[0] ≥ 0∧z[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0)
(9) (1 + y[0] ≥ 0∧z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0)
(10) (1 + y[0] ≥ 0∧z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0)
(11) (+@z(y[0], 1@z)=y[1]1∧x[0]=x[1]1∧z[0]=z[1]1∧&&(>@z(x[0], y[0]), >@z(x[0], z[0]))=TRUE∧y[1]=y[0]∧x[1]=x[0]∧&&(>@z(x[1], y[1]), >@z(x[1], z[1]))=TRUE∧+@z(z[1], 1@z)=z[0] ⇒ F(TRUE, x[0], y[0], z[0])≥NonInfC∧F(TRUE, x[0], y[0], z[0])≥F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])∧(UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥))
(12) (>@z(x[1], y[1])=TRUE∧>@z(x[1], +@z(z[1], 1@z))=TRUE∧>@z(x[1], z[1])=TRUE ⇒ F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥NonInfC∧F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥F(&&(>@z(x[1], y[1]), >@z(x[1], +@z(z[1], 1@z))), x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))∧(UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥))
(13) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -2 + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(14) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -2 + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(15) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -1 + (-1)z[1] ≥ 0∧x[1] + -2 + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(16) (z[1] + x[1] + (-1)y[1] ≥ 0∧x[1] ≥ 0∧-1 + x[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(17) (1 + z[1] + x[1] + (-1)y[1] ≥ 0∧1 + x[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(18) (1 + z[1] + x[1] + (-1)y[1] ≥ 0∧1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(19) (1 + z[1] + x[1] + y[1] ≥ 0∧1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(20) (1 + z[1] + x[1] + (-1)y[1] ≥ 0∧1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(21) (1 + (-1)z[1] + x[1] + (-1)y[1] ≥ 0∧1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(22) (1 + (-1)z[1] + x[1] + y[1] ≥ 0∧1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(23) (1 + z[1] + x[1] + y[1] ≥ 0∧1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(24) (z[0]=z[0]1∧x[0]=x[0]1∧y[1]=y[0]∧&&(>@z(x[0], y[0]), >@z(x[0], z[0]))=TRUE∧x[1]=x[0]∧&&(>@z(x[1], y[1]), >@z(x[1], z[1]))=TRUE∧+@z(y[0], 1@z)=y[0]1∧+@z(z[1], 1@z)=z[0] ⇒ F(TRUE, x[0], y[0], z[0])≥NonInfC∧F(TRUE, x[0], y[0], z[0])≥F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])∧(UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥))
(25) (>@z(x[1], y[1])=TRUE∧>@z(x[1], +@z(z[1], 1@z))=TRUE∧>@z(x[1], z[1])=TRUE ⇒ F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥NonInfC∧F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥F(&&(>@z(x[1], y[1]), >@z(x[1], +@z(z[1], 1@z))), x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))∧(UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥))
(26) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -2 + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(27) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -2 + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(28) (x[1] + -1 + (-1)z[1] ≥ 0∧x[1] + -2 + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)y[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(29) (x[1] ≥ 0∧-1 + x[1] ≥ 0∧z[1] + x[1] + (-1)y[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(30) ((-1)z[1] + y[1] + x[1] ≥ 0∧-1 + (-1)z[1] + y[1] + x[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(31) (y[1] ≥ 0∧-1 + y[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(32) (1 + y[1] ≥ 0∧y[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(33) (1 + y[1] ≥ 0∧y[1] ≥ 0∧x[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(34) (1 + y[1] ≥ 0∧y[1] ≥ 0∧x[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(35) (z[0]=z[0]1∧x[0]=x[0]1∧x[0]1=x[1]∧&&(>@z(x[0], y[0]), >@z(x[0], z[0]))=TRUE∧+@z(y[0]1, 1@z)=y[1]∧z[0]1=z[1]∧+@z(y[0], 1@z)=y[0]1∧&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1))=TRUE ⇒ F(TRUE, x[0]1, y[0]1, z[0]1)≥NonInfC∧F(TRUE, x[0]1, y[0]1, z[0]1)≥F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(36) (>@z(x[0], y[0])=TRUE∧>@z(x[0], z[0])=TRUE∧>@z(x[0], +@z(y[0], 1@z))=TRUE ⇒ F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥NonInfC∧F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥F(&&(>@z(x[0], +@z(y[0], 1@z)), >@z(x[0], z[0])), x[0], +@z(+@z(y[0], 1@z), 1@z), z[0])∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(37) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(38) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(39) (x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(40) (x[0] + -1 + (-1)z[0] ≥ 0∧1 + y[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(41) (z[0] ≥ 0∧1 + y[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(42) (z[0] ≥ 0∧1 + y[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(43) (z[0] ≥ 0∧1 + y[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(44) (+@z(z[1], 1@z)=z[0]1∧y[1]=y[0]1∧x[1]=x[0]1∧&&(>@z(x[0], y[0]), >@z(x[0], z[0]))=TRUE∧&&(>@z(x[1], y[1]), >@z(x[1], z[1]))=TRUE∧+@z(y[0], 1@z)=y[1]∧z[0]=z[1]∧x[0]=x[1] ⇒ F(TRUE, x[1], y[1], z[1])≥NonInfC∧F(TRUE, x[1], y[1], z[1])≥F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))∧(UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥))
(45) (>@z(x[0], y[0])=TRUE∧>@z(x[0], z[0])=TRUE∧>@z(x[0], +@z(y[0], 1@z))=TRUE ⇒ F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥NonInfC∧F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥F(&&(>@z(x[0], +@z(y[0], 1@z)), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), +@z(z[0], 1@z))∧(UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥))
(46) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + (-1)z[0] + x[0] ≥ 0∧0 ≥ 0)
(47) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + (-1)z[0] + x[0] ≥ 0∧0 ≥ 0)
(48) (x[0] + -2 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + (-1)z[0] + x[0] ≥ 0)
(49) (-1 + y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + (-1)z[0] + x[0] ≥ 0)
(50) (y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧1 + y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + (-1)z[0] + x[0] ≥ 0)
(51) (y[0] ≥ 0∧z[0] ≥ 0∧1 + y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧1 + (-1)Bound + z[0] ≥ 0)
(52) (y[0] ≥ 0∧z[0] ≥ 0∧1 + y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧1 + (-1)Bound + z[0] ≥ 0)
(53) (y[0] ≥ 0∧z[0] ≥ 0∧1 + y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧1 + (-1)Bound + z[0] ≥ 0)
(54) (+@z(z[1], 1@z)=z[1]1∧+@z(z[1]1, 1@z)=z[0]∧x[1]1=x[0]∧&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1))=TRUE∧y[1]=y[1]1∧&&(>@z(x[1], y[1]), >@z(x[1], z[1]))=TRUE∧x[1]=x[1]1∧y[1]1=y[0] ⇒ F(TRUE, x[1]1, y[1]1, z[1]1)≥NonInfC∧F(TRUE, x[1]1, y[1]1, z[1]1)≥F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))∧(UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥))
(55) (>@z(x[1], y[1])=TRUE∧>@z(x[1], +@z(z[1], 1@z))=TRUE∧>@z(x[1], z[1])=TRUE ⇒ F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥NonInfC∧F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥F(&&(>@z(x[1], y[1]), >@z(x[1], +@z(z[1], 1@z))), x[1], y[1], +@z(+@z(z[1], 1@z), 1@z))∧(UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥))
(56) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -2 + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧-1 + (-1)Bound + (-1)z[1] + x[1] ≥ 0∧0 ≥ 0)
(57) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -2 + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧-1 + (-1)Bound + (-1)z[1] + x[1] ≥ 0∧0 ≥ 0)
(58) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -1 + (-1)z[1] ≥ 0∧x[1] + -2 + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0∧-1 + (-1)Bound + (-1)z[1] + x[1] ≥ 0)
(59) (z[1] + x[1] + (-1)y[1] ≥ 0∧x[1] ≥ 0∧-1 + x[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0∧(-1)Bound + x[1] ≥ 0)
(60) (1 + z[1] + x[1] + (-1)y[1] ≥ 0∧1 + x[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[1] ≥ 0)
(61) (1 + z[1] + x[1] + (-1)y[1] ≥ 0∧1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[1] ≥ 0)
(62) (1 + z[1] + x[1] + y[1] ≥ 0∧1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[1] ≥ 0)
(63) (1 + z[1] + x[1] + (-1)y[1] ≥ 0∧1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[1] ≥ 0)
(64) (1 + (-1)z[1] + x[1] + (-1)y[1] ≥ 0∧1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[1] ≥ 0)
(65) (1 + z[1] + x[1] + y[1] ≥ 0∧1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[1] ≥ 0)
(66) (1 + (-1)z[1] + x[1] + y[1] ≥ 0∧1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0∧1 + (-1)Bound + x[1] ≥ 0)
(67) (+@z(z[1], 1@z)=z[1]1∧+@z(z[1]1, 1@z)=z[1]2∧y[1]1=y[1]2∧x[1]1=x[1]2∧&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1))=TRUE∧y[1]=y[1]1∧&&(>@z(x[1], y[1]), >@z(x[1], z[1]))=TRUE∧x[1]=x[1]1 ⇒ F(TRUE, x[1]1, y[1]1, z[1]1)≥NonInfC∧F(TRUE, x[1]1, y[1]1, z[1]1)≥F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))∧(UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥))
(68) (>@z(x[1], y[1])=TRUE∧>@z(x[1], +@z(z[1], 1@z))=TRUE∧>@z(x[1], z[1])=TRUE ⇒ F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥NonInfC∧F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥F(&&(>@z(x[1], y[1]), >@z(x[1], +@z(z[1], 1@z))), x[1], y[1], +@z(+@z(z[1], 1@z), 1@z))∧(UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥))
(69) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -2 + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧-1 + (-1)Bound + (-1)z[1] + x[1] ≥ 0∧0 ≥ 0)
(70) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -2 + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧-1 + (-1)Bound + (-1)z[1] + x[1] ≥ 0∧0 ≥ 0)
(71) (x[1] + -2 + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -1 + (-1)z[1] ≥ 0 ⇒ -1 + (-1)Bound + (-1)z[1] + x[1] ≥ 0∧(UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0)
(72) (-1 + x[1] ≥ 0∧z[1] + x[1] + (-1)y[1] ≥ 0∧x[1] ≥ 0 ⇒ (-1)Bound + x[1] ≥ 0∧(UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0)
(73) (x[1] ≥ 0∧1 + z[1] + x[1] + (-1)y[1] ≥ 0∧1 + x[1] ≥ 0 ⇒ 1 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0)
(74) (x[1] ≥ 0∧1 + z[1] + x[1] + (-1)y[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0 ⇒ 1 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0)
(75) (x[1] ≥ 0∧1 + z[1] + x[1] + y[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0 ⇒ 1 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0)
(76) (x[1] ≥ 0∧1 + z[1] + x[1] + (-1)y[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 1 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0)
(77) (x[1] ≥ 0∧1 + (-1)z[1] + x[1] + (-1)y[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 1 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0)
(78) (x[1] ≥ 0∧1 + (-1)z[1] + x[1] + y[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 1 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0)
(79) (x[1] ≥ 0∧1 + z[1] + x[1] + y[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 1 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(F(&&(>@z(x[1]1, y[1]1), >@z(x[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧0 ≥ 0)
(80) (+@z(z[1], 1@z)=z[1]1∧y[1]=y[1]1∧&&(>@z(x[0], y[0]), >@z(x[0], z[0]))=TRUE∧&&(>@z(x[1], y[1]), >@z(x[1], z[1]))=TRUE∧x[1]=x[1]1∧+@z(y[0], 1@z)=y[1]∧z[0]=z[1]∧x[0]=x[1] ⇒ F(TRUE, x[1], y[1], z[1])≥NonInfC∧F(TRUE, x[1], y[1], z[1])≥F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))∧(UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥))
(81) (>@z(x[0], y[0])=TRUE∧>@z(x[0], z[0])=TRUE∧>@z(x[0], +@z(y[0], 1@z))=TRUE ⇒ F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥NonInfC∧F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥F(&&(>@z(x[0], +@z(y[0], 1@z)), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), +@z(z[0], 1@z))∧(UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥))
(82) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + (-1)z[0] + x[0] ≥ 0∧0 ≥ 0)
(83) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + (-1)z[0] + x[0] ≥ 0∧0 ≥ 0)
(84) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + (-1)z[0] + x[0] ≥ 0∧0 ≥ 0)
(85) (y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧-1 + y[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + (-1)z[0] + x[0] ≥ 0∧0 ≥ 0)
(86) (1 + y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + (-1)z[0] + x[0] ≥ 0∧0 ≥ 0)
(87) (1 + y[0] ≥ 0∧z[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧1 + (-1)Bound + z[0] ≥ 0∧0 ≥ 0)
(88) (1 + y[0] ≥ 0∧z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧1 + (-1)Bound + z[0] ≥ 0∧0 ≥ 0)
(89) (1 + y[0] ≥ 0∧z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧1 + (-1)Bound + z[0] ≥ 0∧0 ≥ 0)
POL(F(x1, x2, x3, x4)) = -1 + (-1)x4 + x2 + (-1)x1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = 1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
F(TRUE, x[1], y[1], z[1]) → F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))
F(TRUE, x[1], y[1], z[1]) → F(&&(>@z(x[1], y[1]), >@z(x[1], z[1])), x[1], y[1], +@z(z[1], 1@z))
F(TRUE, x[0], y[0], z[0]) → F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])
FALSE1 → &&(FALSE, FALSE)1
+@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (0), if ((z[0] →* z[0]a)∧(x[0] →* x[0]a)∧(+@z(y[0], 1@z) →* y[0]a)∧(&&(>@z(x[0], y[0]), >@z(x[0], z[0])) →* TRUE))
f(TRUE, x0, x1, x2)
(1) (z[0]=z[0]1∧x[0]=x[0]1∧+@z(y[0]1, 1@z)=y[0]2∧x[0]1=x[0]2∧&&(>@z(x[0], y[0]), >@z(x[0], z[0]))=TRUE∧z[0]1=z[0]2∧+@z(y[0], 1@z)=y[0]1∧&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1))=TRUE ⇒ F(TRUE, x[0]1, y[0]1, z[0]1)≥NonInfC∧F(TRUE, x[0]1, y[0]1, z[0]1)≥F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(2) (>@z(x[0], y[0])=TRUE∧>@z(x[0], z[0])=TRUE∧>@z(x[0], +@z(y[0], 1@z))=TRUE ⇒ F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥NonInfC∧F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥F(&&(>@z(x[0], +@z(y[0], 1@z)), >@z(x[0], z[0])), x[0], +@z(+@z(y[0], 1@z), 1@z), z[0])∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(3) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧(-1)Bound + (-1)z[0] + (-1)y[0] + (2)x[0] ≥ 0∧0 ≥ 0)
(4) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧(-1)Bound + (-1)z[0] + (-1)y[0] + (2)x[0] ≥ 0∧0 ≥ 0)
(5) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound + (-1)z[0] + (-1)y[0] + (2)x[0] ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(6) (y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧-1 + y[0] ≥ 0 ⇒ 0 ≥ 0∧1 + (-1)Bound + (-1)z[0] + x[0] + y[0] ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(7) (1 + y[0] ≥ 0∧x[0] + -1 + (-1)z[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧2 + (-1)Bound + (-1)z[0] + x[0] + y[0] ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(8) (1 + y[0] ≥ 0∧z[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧3 + (-1)Bound + z[0] + y[0] ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(9) (1 + y[0] ≥ 0∧z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧3 + (-1)Bound + z[0] + y[0] ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(10) (1 + y[0] ≥ 0∧z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧3 + (-1)Bound + z[0] + y[0] ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(x[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
POL(F(x1, x2, x3, x4)) = 2 + (-1)x4 + (-1)x3 + (2)x2 + x1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
F(TRUE, x[0], y[0], z[0]) → F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])
F(TRUE, x[0], y[0], z[0]) → F(&&(>@z(x[0], y[0]), >@z(x[0], z[0])), x[0], +@z(y[0], 1@z), z[0])
&&(FALSE, FALSE)1 → FALSE1
&&(TRUE, TRUE)1 ↔ TRUE1
+@z1 ↔
&&(FALSE, TRUE)1 → FALSE1
&&(TRUE, FALSE)1 → FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
f(TRUE, x0, x1, x2)